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Abstract—This study compares the performance of a Kinect
(depth camera) and RPLIDAR (2D LiDAR) sensor for Simulta-
neous Localization and Mapping (SLAM) using two state-of-the-
art graph-based SLAM algorithms: Cartographer and SLAM
Toolbox. The results demonstrate that RPLIDAR outperforms
Kinect in both mapping and localization, offering more robust-
ness and precision. However, Kinect can detect obstacles outside
the RPLIDAR’s field of view, illustrating the potential advantages
of sensor fusion. A sensor fusion method was developed, though it
presents challenges. This work highlights the trade-offs between
the sensors and lays the groundwork for future research into
sensor fusion for improved SLAM performance.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a crit-
ical problem in robotics, where the objective is for a robot
to navigate and map its environment while simultaneously
estimating its own position. 2D LiDAR systems are widely
employed in indoor SLAM due to their high accuracy in dis-
tance measurement, ability to generate detailed spatial maps,
and 360° field of view. However, one significant drawback
is their inability to detect low-lying obstacles, as 2D LiDAR
sensors only scan the environment in a horizontal plane.
Conversely, camera-based systems offer a broader field of view
and depth information that enhances environmental perception.
Nevertheless, these systems also face challenges, including
sensitivity to varying lighting conditions and a restricted field
of view. We conducted experiments to compare the mapping
performance of the two sensors in various conditions, and
proposed a method to integrate data from both a depth camera
and LiDAR, with the goal of combining the strengths of both
sensors while mitigating their weaknesses. For our experiment,
we used a modified Turtlebot 2 with a Kinect depth camera
and a RPLIDAR A1 2D LiDAR (Fig. 1).

II. RELATED WORKS

There are two main approaches to solving SLAM: filter-
based and graph-based methods.

Filter-based SLAM approaches, such as Extended Kalman
Filters or particle filters, aim to estimate the robot’s state by
continuously updating and refining measurements, minimizing
uncertainty as the robot moves. These methods have been used
for their simplicity and efficiency, but they struggle in larger,
more complex environments where the accumulation of errors
can degrade the mapping accuracy.

Graph-based SLAM, by contrast, models the problem as an
optimization task over a graph, where nodes represent robot
poses, and edges encode the spatial constraints between them.
This allows for global optimization and has proven to deliver

Figure 1. The robot we used for experiments. It is a modified Turtlebot 2
equipped with a Jetson Nano computer running ROS2, a Kinect depth camera
and a RPLIDAR A1 2D LiDAR.

superior results in accuracy and scalability, as explained in
the tutorial by Grisetti et al. [1]. Konolige et al. [2] further
enhanced this approach with Sparse Pose Adjustment (SPA),
an efficient method to handle large-scale SLAM problems in
real-time, making it one of the leading optimization techniques
in this domain.

Our project focuses on evaluating SLAM performance using
two sensors, the Kinect RGB-D camera and the RPLIDAR
laser scanner, mounted on a TurtleBot. The Kinect provides 3D
depth data but is limited by its shorter range and limited field
of view, while the RPLIDAR offers long-range, 360° field of
view accurate 2D scans but cannot detect small, ground-level
obstacles. We also seek to combine their strengths by taking
data from both sensors, providing more robust mapping and
localization performance.

Korkmaz et al. [3] conducted a comparative study of Kinect
and RPLIDAR mapping performance using Gmapping, a filter-
based SLAM algorithm. Their analysis provided qualitative
insights but lacked quantitative metrics to comprehensively
assess performance. Similarly, Mu et al. [4] and He et al. [5]
explored the fusion of LiDAR and depth camera data, though
their reliance on filter-based approaches limited the optimiza-
tion potential when compared to graph-based techniques.

In our study, we aim to evaluate the performance of both
sensors using graph-based SLAM frameworks, which offer



enhanced accuracy through global optimization. We also pro-
pose a sensor fusion method to improve mapping results,
particularly in complex indoor environments.

For our experiments, we employ two state-of-the-art graph-
based SLAM algorithms. The first is Cartographer, developed
by Google [6], known for its high-performance online SLAM
and support for landmark-based features. The second is SLAM
Toolbox by Macenski and Jambrecic [7], which is built on
Sparse Pose Adjustment (SPA) and offers a versatile toolkit
for SLAM in dynamic settings. The robust capabilities of both
algorithms make them ideal for evaluating the Kinect and
RPLIDAR on the TurtleBot platform.

At this stage, our practical implementation will focus on
sensor integration, comparison and preliminary testing of the
fusion results, leaving further exploration of performance
improvements for future research.

III. METHODOLOGY

A. Setup

The experimental setup utilizes a modified Turtlebot 2
platform equipped with a Jetson Nano computer running ROS
2. The system integrates two primary sensors: an RPLIDAR
mounted on the robot’s second plate and a Kinect sensor in
its original position on the chassis. To optimize performance,
the RPLIDAR operates in ”Boost” mode, having around 270-
degree field of view (due to obstruction), a maximum range
of 12 meters and a sampling rate of 8000 points per second.
In contrast, the Kinect sensor only provides a 58-degree
horizontal field of view and detects points up to 4 meters,
with both RGB and depth image outputs.

Preprocessing was necessary for data from both sensors
before mapping. The Kinect’s depth image was transformed
into a point cloud, where only the points in the desired
height range are kept. These points were then projected onto
a horizontal plane, retaining only the closest points for each
angle. Additionally, the Kinect’s RGB image was processed
using the ArUco library to detect the April tags placed in the
environment, which served as landmarks for Cartographer. For
the RPLIDAR, which had its field of view partially obstructed
by the robot’s mounting poles, we used a custom range filter
package in ROS 2 to eliminate data from blocked regions.

B. Sensor Fusion

An online sensor fusion method is developed to integrate
data from both sensors. The most recent measurements of both
sensors are fused together by first calculating the coordinates
of the points detected by Kinect in the RPLIDAR coordinate
space, then interpolating the measurement by finding the
closest angle measured by RPLIDAR. The closer points of
the two sensors are retained in the merged data. However, this
approach can have limitation when obstacles that can only
be detected by Kinect move out of Kinect’s field of view. The
conflicting measurements from the RPLIDAR can override the
accurate map of the obstacle, potentially compromising map
consistency.

C. Experiments

Our experiments were conducted in three distinct environ-
ments (Fig. 2) designed to assess the performance of Kinect
and RPLIDAR sensors, using both Cartographer and SLAM
Toolbox. April tags are placed in the first two scenes as
Cartographer landmarks.

(a) Rectangle (b) Corridor

(c) Computer Lab

Figure 2. The robot testing environments

The first test, ”Rectangle”, took place in a compact room
with several large blocks that served as easy features for
mapping. The robot followed a rectangular trajectory, making
a full loop plus a quarter to test the loop closure ability of
graph-based SLAM. This setup allowed us to assess how well
each sensor-library combination handled detailed mapping and
turning in general, as well as how well our system handles a
confined environment.

The second test, ”Corridor”, was a feature-scarce, open
hallway, where the robot traveled in a straight path. This
scenario posed a challenge due to the minimal presence of
distinct features, which are critical for effective SLAM-based
localization. The primary goal was to gauge the system’s
reliability and accuracy in a simplified and less informative en-
vironment, revealing potential limitations when environmental
cues are sparse.



The third test, ”Computer Lab”, was conducted in a room
filled with diverse obstacles, including low-lying objects that
are undetectable by the RPLIDAR sensor. This test aimed
to evaluate the robustness of the sensors in complex envi-
ronments, emphasizing the advantages of sensor fusion and
demonstrating the strengths and limitations of our approach.

To establish a ground truth, we pre-marked the intended
driving path with tape and measured its dimensions. The robot
was then driven directly along the taped route while its sensors
collected data.

D. Evaluation

We recorded our experiments using ROS bags and later
replayed the sensor measurements to run SLAM with different
configurations on the robot. This approach ensured identical
input data across all SLAM algorithms, eliminating the need
to run multiple SLAM instances simultaneously, which could
introduce performance issues and compromise evaluation ac-
curacy.

For quantitative analysis, we assessed the precision of the
robot’s trajectories. The robot’s relative position to the map
was sampled at a frequency of 10 times per second. Given the
absence of precise ground truth for the entire trajectory as we
manually controlled the robot, we focused on key points for
evaluation, calculating the squared error between the ground
truth and the predicted locations of these key points. In our
experiment, these key points correspond to the positions where
the robot turned in place, and the final position. This method
provided a more accurate assessment of sensor performance
across various conditions, as well as the effectiveness of sensor
fusion strategy.

IV. RESULTS

In the first test, Rectangle, most sensor and algorithm com-
binations yielded accurate results in both mapping (Fig. 5) and
localization (Fig. 3), with the exception of Kinect combined
with SLAM Toolbox, where the system inaccurately detected
a turn, leading to significant deviations in the final map and
trajectory estimation. Results from Cartographer with and
without tags were nearly identical, likely due to the Kinect’s
narrow field of view and low image resolution, which hindered
reliable tag detection.

To determine error for each of the trajectories, we calculated
the Root Mean Squared Error (RMSE):

RMSE =

√∑
(xi − x̂i)2 + (yi − ŷi)2

N

The results (Table. I) showed that RPLIDAR provides better
results in all scenarios.

In the second test (Corridor), Cartographer performed ro-
bustly in both mapping (Fig. 6) and localization (Fig. 4) with
both Kinect and RPLIDAR. The generated maps matched
the actual dimensions of the hallway (Table. II), and the
system consistently identified the robot’s position accurately.

Figure 3. Trajectories calculated with different SLAM algorithms and sensor
data on the ”Rectangle” map. The trajectories calculated using tags are not
plotted because they are nearly identical to those without using tags and they
overlap on the graph. The ground truth is a rectangular path of 2.5*1.25 meters
with uncertainty of 0.05 meters due to manual driving. All trajectories starts
at (0,0) and follows a counterclockwise path. The highlighted dots are the
localizations of the robot when it is turning at the vertices of the rectangle,
and the final positions are marked with stars

”Rectangle” experiment RMSE (m)
Cartographer with Kinect depth only 0.179
Cartographer with RPLIDAR only 0.151
Cartographer with Kinect depth and tags 0.180
Cartographer with RPLIDAR and tags 0.152
SLAM Toolbox with Kinect 1.859
SLAM Toolbox with RPLIDAR 0.129

Table I
ERROR OF KEY POINTS OF THE ”RECTANGLE” MAP

Figure 4. Trajectories calculated with different SLAM algorithms and sensor
data on the ”Corridor” map. The trajectories calculated using tags are not
plotted because they are nearly identical to those without using tags and they
overlap on the graph. The final positions are marked with stars. The robot
traveled 11.6 meters with ground truth measurement that have uncertainty of
0.05 meters

”Corridor” experiment Error (m)
Cartographer with Kinect depth only 1.214
Cartographer with RPLIDAR only 0.126
Cartographer with Kinect depth and tags 1.213
Cartographer with RPLIDAR and tags 0.126
SLAM Toolbox with Kinect 5.880
SLAM Toolbox with RPLIDAR 6.868

Table II
ERROR OF FINAL POSITION ON THE ”CORRIDOR” MAP



(a) Cartographer with Kinect depth only (b) Cartographer with RPLIDAR only

(c) Cartographer with Kinect depth and tags (d) Cartographer with RPLIDAR and tags

(e) SLAM Toolbox with Kinect (f) SLAM Toolbox with RPLIDAR

Figure 5. Maps generated by the SLAM algorithms in the first experiment ”Rectangle”. Black = occupied, white = unoccupied, gray = unknown

(a) Cartographer with Kinect depth only (b) Cartographer with RPLIDAR only

(c) Cartographer with Kinect depth and tags (d) Cartographer with RPLIDAR and tags

(e) SLAM Toolbox with Kinect (f) SLAM Toolbox with RPLIDAR

Figure 6. Maps generated by the SLAM algorithms in the second experiment ”Corridor”. Black = occupied, white = unoccupied, gray = unknown



However, SLAM Toolbox struggled in this feature-poor envi-
ronment, producing maps significantly shorter than the hall-
way, indicating a considerable underestimation of traveled
distance. This resulted in localization errors, as the robot’s
perceived position did not align with its true path. Across
both environments, RPLIDAR outperformed Kinect, primarily
due to its longer range and higher sensitivity to environmental
features.

In the first two experiments, we only used a slice of Kinect
data corresponding to the height detected by the RPLIDAR.
This ensured mapping on the same plane, allowing for a
fair comparison between the two sensors. However, for the
”Computer Lab” test, we sought to illustrate scenarios where
the RPLIDAR fails to detect certain obstacles due to its fixed
height. In this test, we utilized all Kinect data points above the
ground plane and below robot height, allowing the sensor to
detect obstacles as long as they were within its field of view.

The mapping results (Fig. 7) clearly illustrate the advantages
of the Kinect sensor in detecting a wider range of obstacles.
Features such as the window on the left, stairs on the right,
numerous table and chair legs, and even a dangling cable were
all marked as non-traversable in the Kinect map but were
completely missed by the RPLIDAR. The fusion data captured
these features as well, although they are not very clear in

Figure 8. Trajectories calculated with different SLAM algorithms and sensor
data on the ”Computer Lab” map. The ground truth is a rectangular path of
2.5*2 meters with uncertainty of 0.05 meters

(a) Cartographer with Kinect depth only (b) Cartographer with RPLIDAR only (c) Cartographer with sensor fusion

(d) SLAM Toolbox with Kinect (e) SLAM Toolbox with RPLIDAR (f) SLAM Toolbox with sensor fusion

Figure 7. Maps generated by the SLAM algorithms in the third experiment ”Computer Lab”. Black = occupied, white = unoccupied, gray = unknown



the final map because RPLIDAR data gradually erased these
obstacles as they moved out of the Kinect’s field of view.

The trajectories (Fig.8) and errors (TableIII) were calculated
using the same method as in the first experiment. The results
were mixed: while Cartographer achieved similar localization
precision using sensor fusion and RPLIDAR alone, SLAM
Toolbox’s precision was compromised by the higher uncer-
tainty of Kinect measurements and the latency introduced by
the additional processing required for the Kinect data.

”Computer Lab” experiment RMSE (m)
Cartographer with Kinect depth only 0.225
Cartographer with RPLIDAR only 0.163
Cartographer with sensor fusion 0.139
SLAM Toolbox with Kinect 1.286
SLAM Toolbox with RPLIDAR 0.210
SLAM Toolbox with sensor fusion 0.329

Table III
ERROR OF KEY POINTS OF THE ”COMPUTER LAB” MAP

V. DISCUSSION AND FUTURE WORKS

The experiments demonstrated that RPLIDAR consistently
provides more robust and accurate mapping results than
Kinect, making it a valuable upgrade for the Turtlebot 2 in this
specific task. However, its inability to perceive anything out-
side a 2D plane limits its effectiveness in detecting obstacles or
performing advanced tasks like autonomous navigation. This
limitation underscores the potential value of sensor fusion.

This research faced several limitations due to time and
equipment constraints, leaving room for further exploration
in sensor performance and fusion strategies.

One major limitation was the inability to calibrate the
Kinect’s intrinsic parameters accurately. We relied on the de-
fault calibration, which introduced additional errors compared
to a properly calibrated setup [8]. A more precise calibration
could be achieved through stereo calibration using a large
checkerboard pattern and an IR emitter [9].

Additionally, evaluating the error over the entire trajectory
requires a more accurate ground truth. A vision-based system
could provide precise pose tracking of the robot in an indoor
environment, enhancing the accuracy of future comparisons.

Further tuning of SLAM algorithm parameters is also nec-
essary to optimize results. Future studies could benefit from a
comprehensive comparison of state-of-the-art filter-based and
graph-based SLAM algorithms across varied environments and
sensor configurations.

More work is needed to develop a robust sensor fusion
solution. One idea involves using the lifelong mapping feature
of SLAM Toolbox: creating an accurate base map using
RPLIDAR and then augmenting it with additional features
from Kinect data. Alternatively, local maps from Kinect data
could be used for obstacle avoidance. However, this approach
haven’t been tested due to the time constraint of this research.
More sophisticated sensor fusion methods, such as modifying
SLAM algorithms to accommodate data from multiple sensors,
also present an interesting direction for future research.

VI. CONCLUSION

In this study, we evaluated the performance of Kinect
and RPLIDAR sensors using two graph-based SLAM algo-
rithms: Cartographer and SLAM Toolbox. The experiments
demonstrated that the RPLIDAR generally outperformed the
Kinect sensor in mapping and localization due to its field of
view, longer range, and higher precision in distance measure-
ment. Cartographer emerged as the more robust algorithm,
especially in feature-scarce environments like the ”Corridor”
test, accurately mapping and localizing the robot even with
minimal environmental features. In contrast, SLAM Toolbox
encountered difficulties, particularly with the Kinect sensor,
leading to significant errors in both trajectory estimation and
mapping. Future research could focus on improving sensor
calibration and exploring advanced fusion strategies to further
improve SLAM accuracy and robustness.
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